Electronic properties of N(5)-ethyl flavinium ion.

نویسندگان

  • Vincent Sichula
  • Pavel Kucheryavy
  • Renat Khatmullin
  • Ying Hu
  • Ekaterina Mirzakulova
  • Shubham Vyas
  • Samuel F Manzer
  • Christopher M Hadad
  • Ksenija D Glusac
چکیده

We investigated the electronic properties of N(5)-ethyl flavinium perchlorate (Et-Fl(+)) and compared them to those of its parent compound, 3-methyllumiflavin (Fl). Absorption and fluorescence spectra of Fl and Et-Fl(+) exhibit similar spectral features, but the absorption energy of Et-Fl(+) is substantially lower than that of Fl. We calculated the absorption signatures of Fl and Et-Fl(+) using time-dependent density functional theory (TD-DFT) methods and found that the main absorption bands of Fl and Et-Fl(+) are (π,π*) transitions for the S(1) and S(3) excited states. Furthermore, calculations predict that the S(2) state has (n,π*) character. Using cyclic voltammetry and a simplistic consideration of the orbital energies, we compared the HOMO/LUMO energies of Fl and Et-Fl(+). We found that both HOMO and LUMO orbitals of Et-Fl(+) are stabilized relative to those in Fl, although the stabilization of the LUMO level was more pronounced. Visible and mid-IR pump-probe experiments demonstrate that Et-Fl(+) exhibits a shorter excited-state lifetime (590 ps) relative to that of Fl (several nanoseconds), possibly due to faster thermal deactivation in Et-Fl(+), as dictated by the energy gap law. Furthermore, we observed a fast (23-30 ps) S(2) → S(0) internal conversion in transient absorption spectra of both Fl and Et-Fl(+) in experiments that utilized pump excitations with higher energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Fully Organic Water Oxidation Electrocatalysts: A Quest for Simplicity

Despite the growing need for readily available and inexpensive catalysts for the half-reactions involved in water splitting, water oxidation and reduction electrocatalysts are still traditionally based on noble metals. One long-standing challenge has been the development of an oxygen evolution reaction catalyzed by easily available, structurally simple, and purely organic compounds. Herein, we ...

متن کامل

Studies of a Tripodal Biomimetic Siderophore Analog: An Efficient Encapsulation for Fe(III) Ion

A new tris-(2-aminoethyl)amine (TREN) capped tripodal Schiff base ligand has been developed by mimicking structural features of a natural siderophore, Bacillibactin, by substituting the catechol units with salicylaldehyde and employing amino acid as spacer. Synthesis of the ligand N-[2-[bis[2-[[2-[(2-hydroxyphenyl)methylamino]acetyl] amino]ethyl]amino]ethyl]-2-[(2-hydroxyphenyl)methylamino]...

متن کامل

Preparation and Application of Al3+ - Sensor Based On (2Z) — Methyl 2 — ((z) (p-tolylimino) -3-Ethyl —4-0xothiazolidin —5— Ylidene Acetate in PVC Matrix

Al3+-Potentiometric sensor, based on (2Z) -methyl 2- ((z) (p-tolylimino)-3-ethyl -4-oxothiazolidin -5- ylidene) Acetate (MTEOY) as a neutral ionophore, was successfully developed for the detectionof Al3+ in aqueous solutions. The electrode responds to Al3+ ion with a sensitivity of 19.8 ± 0.1 mV/decade over the range 1.0 x 10-8- 1.0 x 10-1 mol LT' and in a pH range of 3.0-9.0. The electrodeshow...

متن کامل

Investigation of ion transport and water content properties in anion exchange membranes based on polysulfone for solid alkaline fuel cell application

In present research work, homogeneous anion exchange membranes based on polysulfone (QAPSFs) were prepared via chloromethylation, amination and alkalization. In amination step, trimethylamine and N,N,N',N'-tetramethyl-1,6-hexanediamine were used as amination and crosslinking agents, respectively. The chloromethylated polysulfone was characterized by 1HNMR spectroscopy and chloromethylation degr...

متن کامل

Structural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study

We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 114 46  شماره 

صفحات  -

تاریخ انتشار 2010